Extensions 1→N→G→Q→1 with N=C22 and Q=C9×Dic3

Direct product G=N×Q with N=C22 and Q=C9×Dic3
dρLabelID
Dic3×C2×C18144Dic3xC2xC18432,373

Semidirect products G=N:Q with N=C22 and Q=C9×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C9×Dic3) = C9×A4⋊C4φ: C9×Dic3/C18S3 ⊆ Aut C221083C2^2:(C9xDic3)432,242
C222(C9×Dic3) = Dic3×C3.A4φ: C9×Dic3/C3×Dic3C3 ⊆ Aut C22366C2^2:2(C9xDic3)432,271
C223(C9×Dic3) = C9×C6.D4φ: C9×Dic3/C3×C18C2 ⊆ Aut C2272C2^2:3(C9xDic3)432,165

Non-split extensions G=N.Q with N=C22 and Q=C9×Dic3
extensionφ:Q→Aut NdρLabelID
C22.(C9×Dic3) = C9×C4.Dic3φ: C9×Dic3/C3×C18C2 ⊆ Aut C22722C2^2.(C9xDic3)432,127
C22.2(C9×Dic3) = C18×C3⋊C8central extension (φ=1)144C2^2.2(C9xDic3)432,126

׿
×
𝔽